
JMEA Journal of Modern Educational Achievements

2023, Volume 5 https://scopusacademia.org/

- 399 -

ECONOMICAL DEVELOPMENT OF ALGORITHMS FOR

CLARIFICATION

Erdonov Mukhammadamin Erdon o'g'li

Assistant, Samarkand Institute of Economics and service

Khakimov Damir Ulugbekovich

Samarkand economy and service

Student of the Institute

ANNOTATION

PROGRAMMING IS DIFFICULT (like many activities that are useful and

worthwhile—and like most of those activities, it can also be rewarding and a lot of

fun). When you write a program, you have to tell the computer every small detail

of what to do. And you have to get everything exactly right, since the computer

will blindly follow your program exactly as written. How, then, do people write

any but the most simple programs? It's not a big mystery, actually. It's a matter of

learning to think in the right way.

A program is an expression of an idea. A programmer starts with a general

idea of a task for the computer to perform. Presumably, the programmer has some

idea of how to perform the task by hand, at least in general outline. The problem is

to flesh out that outline into a complete, unambiguous, step-by-step procedure for

carrying out the task. Such a procedure is called an "algorithm." (Technically, an

algorithm is an unambiguous, step-by-step procedure that always terminates after a

finite number of steps. We don't want to count procedures that might go on

forever.) An algorithm is not the same as a program. A program is written in some

particular programming language. An algorithm is more like the idea behind the

program, but it's the idea of the steps the program will take to perform its task, not

just the idea of what the task needs to accomplish in the end. When describing an

algorithm, the steps don't necessarily have to be specified in complete detail, as

long as the steps are unambiguous and it's clear that carrying out the steps will

accomplish the assigned task. An algorithm can be expressed in any language,

https://scopusacademia.org/

JMEA Journal of Modern Educational Achievements

2023, Volume 5 https://scopusacademia.org/

- 400 -

including English. Of course, an algorithm can only be expressed as an actual

program if all the details have been filled in. So, where do algorithms come from?

Usually, they have to be developed, often with a lot of thought and hard work.

Skill at algorithm development is something that comes with practice, but there are

techniques and guidelines that can help. I'll talk here about some techniques and

guidelines that are relevant to "programming in the small," and I will return to the

subject several times in later chapters.

When programming in the small, you have a few basics to work with:

variables, assignment statements, and input/output routines. You might also have

some subroutines, objects, or other building blocks that have already been written

by you or someone else. (Input/output routines fall into this class.) You can build

sequences of these basic instructions, and you can also combine them into more

complex control structures such as while loops and if statements.

Suppose you have a task in mind that you want the computer to perform. One way

to proceed is to write a description of the task, and take that description as an

outline of the algorithm you want to develop. Then you can refine and elaborate

that description, gradually adding steps and detail, until you have a complete

algorithm that can be translated directly into programming language. This method

is called stepwise refinement, and it is a type of top-down design. As you proceed

through the stages of stepwise refinement, you can write out descriptions of your

algorithm in code—informal instructions that imitate the structure of programming

languages without the complete detail and perfect syntax of actual program code.

As an example, let's see how one might develop the program from the previous

section, which computes the value of an investment over five years. The task that

you want the program to perform is: "Compute and display the value of an

investment for each of the next five years, where the initial investment and interest

rate are to be specified by the user." You might then write—or more likely just

think—that this can be expanded as:

https://scopusacademia.org/

JMEA Journal of Modern Educational Achievements

2023, Volume 5 https://scopusacademia.org/

- 401 -

Get the user's input Compute the value of the investment after 1 year Display

the value Compute the value after 2 years Display the value Compute the value

after 3 years Display the value Compute the value after 4 years.

Display the value Compute the value after 5 years Display the value

Two final notes on this program: First, you might have noticed that the first

term of the sequence—the value of N input by the user—is not printed or counted

by this program. Is this an error? It's hard to say. Was the specification of the

program careful enough to decide? This is the type of thing that might send you

back to the boss/professor for clarification. The problem (if it is one!) can be fixed

easily enough. Just replace the line "counter = 0" before the while loop with the

two lines:

It would be nice if, having developed an algorithm for your program; you

could relax, press a button, and get a perfectly working program. Unfortunately,

the process of turning an algorithm into Java source code doesn't always go

smoothly. And when you do get to the stage of a working program, it's often only

working in the sense that it does something. Unfortunately not what you want it to

do.

After program design comes coding: translating the design into a program

written in Java or some other language. Usually, no matter how careful you are, a

few syntax errors will creep in from somewhere, and the Java compiler will reject

your program with some kind of error message. Unfortunately, while a compiler

will always detect syntax errors, it's not very good about telling you exactly what's

wrong. Sometimes, it's not even good about telling you where the real error is. A

missing or extra brace can be one of the hardest errors to find in a large program.

Always, always indent your program nicely. If you change the program, change the

indentation to match. It's worth the trouble. Use a consistent naming scheme, so

you don't have to struggle to remember whether you called that variable

interestrate or interestRate. In general, when the compiler gives multiple error

messages, don't try to fix the second error message from the compiler until you've

fixed the first one. Once the compiler hits an error in your program, it can get

https://scopusacademia.org/

JMEA Journal of Modern Educational Achievements

2023, Volume 5 https://scopusacademia.org/

- 402 -

confused, and the rest of the error messages might just be guesses. Maybe the best

advice is: Take the time to understand the error before you try to fix it.

Programming is not an experimental science.

When your program compiles without error, you are still not done. You have

to test the program to make sure it works correctly. Remember that the goal is not

to get the right output for the two sample inputs that the professor gave in class.

The goal is a program that will work correctly for all reasonable inputs. Ideally,

when faced with an unreasonable input, it should respond by gently chiding the

user rather than by crashing. Test your program on a wide variety of inputs. Try to

find a set of inputs that will test the full range of functionality that you've coded

into your program. As you begin writing larger programs, write them in stages and

test each stage along the way. You might even have to write some extra code to do

the testing—for example to call a subroutine that you've just written. You don't

want to be faced, if you can avoid it, with 500 newly written lines of code that have

an error in there somewhere.

The point of testing is to find bugs—semantic errors that show up as

incorrect behavior rather than as compilation errors. And the sad fact is that you

will probably find them. Again, you can minimize bugs by careful design and

careful coding, but no one has found a way to avoid them altogether. Once you've

detected a bug, it's time for debugging. You have to track down the cause of the

bug in the program's source code and eliminate it. Debugging is a skill that, like

other aspects of programming, requires practice to master. So don't be afraid of

bugs. Learn from them. One essential debugging skill is the ability to read source

code—the ability to put aside preconceptions about what you think it does and to

follow it the way the computer does—mechanically, step-by-step—to see what it

really does. This is hard. I can still remember the time I spent hours looking for a

bug only to find that a line of code that I had looked at ten times had a "1" where it

should have had an "i", or the time when I wrote a subroutine named Window

Closing which would have done exactly what I wanted except that the computer

https://scopusacademia.org/

JMEA Journal of Modern Educational Achievements

2023, Volume 5 https://scopusacademia.org/

- 403 -

was looking for window Closing (with a lower case "w"). Sometimes it can help to

have someone who doesn't share your preconceptions look at your code.

Often, it's a problem just to find the part of the program that contains the

error. Most programming environments come with a debugger, which is a program

that can help you find bugs. Typically, your program can be run under the control

of the debugger. The debugger allows you to set "breakpoints" in your program. A

breakpoint is a point in the program where the debugger will pause the program so

you can look at the values of the program's variables. The idea is to track down

exactly when things start to go wrong during the program's execution. The

debugger will also let you execute your program one line at a time, so that you can

watch what happens in detail once you know the general area in the program where

the bug is lurking.

And finally, remember the golden rule of debugging: If you are absolutely

sure that everything in your program is right, and if it still doesn't work, then one

of the things that you are absolutely sure of is wrong.

https://scopusacademia.org/

