

ALKALINE REFINING OF SUNFLOWER OIL WITH A NEW TYPE OF REAGENT

Shodiev B.M, Majidov K.Kh.

Bukhara Engineering-Technological Institute

Refining technology of sunflower oil with a new type of alkaline reagent has been studied. The use of a new type of reagent allows significantly improving the quality indicators and the physical-chemical characteristics of refined oils.

Keywords: sunflower oil, alkaline refining, new reagent, quality indicators, physical-chemical characteristics, separation efficiency.

Введение. Сырые растительные масла и жиры содержать в своем составе различные сопутствующие вещества, которых необходимо удалить путем обработки сырья щелочными растворами [1-3]. Щелочная рафинация масел и жиров осуществляется с использованием растворов гидроксида натрия [4-6] различной концентрации в зависимости от исходного кислотного числа сырого масла. В последние время особое внимание уделяют на использование новых видов реагентов в технологии щелочной рафинации подсолнечных масел.

В связи с этим исследования направленные в изучение новых реагентов в технологии щелочной рафинации масел и жиров представляется актуальным.

Цель работы направлена на щелочной рафинации подсолнечного масла с новым видом реагента.

Объектами исследования являлось сырые подсолнечные масла, щелочные растворы гидроксида натрия и нового реагента, технология рафинации, показателям качества сырья и продукции.

Методы исследования для анализа и оценки качества сырья и рафинированных масел использованы современные методы физико-химического исследования, определены показатели масел и щелочных реагентов.

Результаты и обсуждение

Основной исследований являлось улучшение качества и увеличение выхода нейтрализованного подсолнечного масла за счет снижения отходов нейтрального жира и улучшения эффективности процесса разделения эмульсионной системы соапстока для более полного отделения нейтрализационного масла.

На основании многократных проведенных исследований установлено, что нитрилотриметиленфосфоновая кислота HTMФК обладает рядом свойств, обусловливающих возможность ее применения в качестве реагента [7].

Проводили исследования технологии нейтрализации гидратированного подсолнечного масла с новым реагентом, состоящим из смеси NaOH и НТМФК в соотношениях, соответственно (10:1; 5:1; 3,3:1) и предварительно активированной воды

Исследования технологии нейтрализации свободных жирных кислот гидратированного подсолнечного масла осуществляли при температурах 60, 70 и 80°С и расчетном количестве реагента - 0,5%-ного водного раствора в количестве 0,055 - 0,065% от массы масла. Соапсток отделяли методом отстаивания в течение 45 минут.

Эффективное воздействие исследованного реагента на нейтрализацию свободных жирных кислот связано с высокой поверхностной активностью молекул НТМФК, обусловненной сочетанием в них большого числа основных и кислотных донорских центров, позволяющих образовывать свободными комплексные соединения co иминдиж кислотами, фосфолипидами и катионами металлов. Это способствовало снижению свойств системы «соапсток - нейтральное масло» поверхностного натяжения. В табл.1. приведены данные, показывающие влияние 0,5%-ного водного раствора реагента в количестве 0,055 - 0,065 % от массы масла на реологические показатели.

Таблица 1. Влияние исследованного реагента на реологические показатели системы «соапсток - нейтральное масло»

Процентное	Поверхностное	Эффективная
содержание реагента	натяжение (м Н/м)	вязкость (Па*с)
0	30,7	30,1
0,055	26,5	24,8
0,060	23,0	22,3
0,065	23,9	22,6

После нейтрализации и разделения фаз в масле содержится некоторое количество мыла, ухудшающее вкус и последующие процессы рафинации, остатки мыла удаляются промывкой горячей водой.

Поэтому проведено исследование влияния активированной воды на эффективность промывки нейтрализованного масла.

В центрифужную пробирку наливали масло, опускали в водяную баню, погружали в мешалку и нагревали до 90°С при постоянном помешивании. В него медленно вводили воду в количестве 10% от массы масла и перемешивали 2 минуты, затем смесь центрифугировали в течении 5 минут. Для повышения эффективности процесса добавляли лимонную кислоту при промывке обычной водой и смесь лимонной и яблочной кислот в количестве 0,001% от массы масла при промывке подготовленной водой. Промытое масло декантировали и определяли содержание мыла (табл.2.).

Таблица 2.

Влияние качества воды на эффективность промывки нейтрализованного подсолнечного масла

Содержание мыла в образце масла				
До промывки	Промытого обычной водой с жесткостью 4,0 мг*экв/л и щелочностью 2,9 мг*экв/л	Промытого подготовленной водой с жесткостью 0,1 мг» экв/л и щелочностью 0,4мг»экв/л		
0,06%	0,01%			

Анализ полученных данных показывает эффективность применения активированной воды, так как остаточного содержания мыла в нейтрализованном масле не обнаруживается.

В связи с тем, что влага в масле способствует увеличению кислотного числа, промытое масло высушивали. Для этого масло наливали во взвешенный стакан и нагревали при непрерывном перемешивании мешалкой до тех пор пока не исчезала пена, а проба масла после охлаждения пробирки в проточной воде оставалась прозрачной.

Качественные показатели нейтрализованного по традиционной и предлагаемым технологиям рафинации подсолнечного масла, промытого и высушенного приведены в табл.3.

Таблица 3. Физико-химические показатели нейтрализованного подсолнечного масла, отделенного от соапстока

	Показатели при применении нового реагента, процент от массы масла			Показате		
Наименование показателей	0,055	0,060	0,0 65	ли при прменении традиционной технологии		
	При те	емпературе 60°C				
Кислотное число, мг КОН/г	0,23	0,21	0,2	0,28		
Массовая доля, %:	0,1	0,08	0,0 7	0,27		
мыла фосфолипидов	0,05	0,04	3 0,0	0,14		
При температуре 70°C						
Кислотное число, мг КОН/г	0,22	0,19	0,1 9	0,22		
Массовая доля, %: мыла фосфолипидов	0,09	0,07	0,0 7	0,26		
	0,04	0,03	3 0,0	0,13		
При температуре 80°C						
Кислотное число, мг	0,22	0,20	0,2	0,24		

КОН/г			0	
Массовая доля, %:	0,08	0,06	6 0,0	0,24
мыла фосфолипидо	0,03	0,03	3 0,0	0,11

Для оценки полученных результатов использовали контрольный образец подсолнечного масла, нейтрализованного по традиционной технологии с NaOH.

На основании сравнительного анализа физико-химических показателей нейтрализованного подсолнечного масла, отделенного от соапстока (табл.4.) и самого соапстока (табл.5.), полученых при нейтрализации по традиционной и разработанной технологиям установлено, (рис.8) что при нейтрализации по рекомендуемой технологии наилучшие результаты получены при добавлении 0,06% реагента от массы масла при температуре процесса 70°С. При этом количество отделившегося нейтрализованного масла увеличилось на 18% и составило 92% от общего объема системы «соапсток - нейтральное масло». Необходимо отметить, что отделение соапстока от нейтрализованного масла происходит в 2 раза быстрее за 25 минут. Концентрация общего жира в соапстоке уменьшена на 12% при улучшении в 2 раза соотношения омыленного к нейтральному жиру.

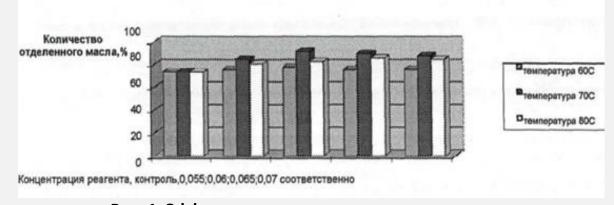


Рис. 1. Эффективность разделения эмульсии при внесении реагента

Таблица 4. Физико-химические показатели отделяемого соапстока от нейтрализованного подсолнечного масла

	Показатели при применении			Показате		
Наименование	нового реагента, процент от массы			ли при		
показателей	масла			применении		
показателеи	0.055	0,0	0,	традиционной		
	0,055	60	065	технологии		
При температуре 60°C						
	17,59	17,	16	19,9		
Массовая доля, %: общего	17,39	06	,68	19,9		
жира жирных кислот(жк)	13,32	13,	13	10.41		
нейтрального жира (нж)	15,52	25	,10	10,41		
	6,03	5,8	5,	9,02		

		4	80	
Соотношение ЖК:НЖ	2,21	2,2 7	2, 26	1,15
-4	При темпера	атуре 70°С		
Массовая доля, %: общего жира жирных кислот(жк) нейтрального жира (нж)	17,44	17, 12	16 ,87	19,21
	13,44	13, 01	,94	9,97
	5,69	5,3 8	5, 37	8,80
Соотношение ЖК:НЖ	2,38	2,4	2, 41	1,13
	При темпера	атуре 80°С		
Maccapag yang 0/1 akwara	17,45	17, 10	16 ,89	18,6
Массовая доля, %: общего жира жирных кислот(жк) нейтрального жира (нж)	13,40	13, 02	,01	9,32
	5,61	5,3 9	5, 38	8,51
Соотношение ЖК:НЖ	2,39	2,4	2, 42	1,09

 Таблица 5.

 Качественные показатели подсолнечного масла, полученного по предлагаемой технологии нейтрализации свободных жирных кислот

свооодных жирных кислот						
	Показатели нейтрализованного, промыт					
	и высушенного подсолнечного масла					
Наименование показателей	По	По				
	рекомендуемой	традиционной				
	технологии	технологии				
1	2	3				
Кислотное число, мг КОН/г	0,18	0,22				
Массовая доля, % мыла	-	0,006				
фосфолипидов влаги и летучих	0,03	0,05				
веществ	0,07	0,1				
Перекисное число ммоль 72	0,5	1,3				
О/кг	,	1,5				
Цветное число, мг йода	8	10				
1	2	3				
Содержание токоферолов, мг/100г	58	51				
Массовая доля металлов,						
мг/кг:						
Fe	0,21	0,96				
Cu	0,11	0,64				
Mg	0,53	0,97				
Na	0,62	2,31				
Ca	0,68	1,52				

Таким образом, проведенные исследования показали эффективность применения в технологии нейтрализации свободных жирных кислот подсолнечного масла нового реагента, состоящего из смеси гидроксида натрия и нитрилотриметиленфосфоновой кислоты в соотношении 5:1 в количестве 0,06% от массы масла и предварительно подготовленной воды, позволившего:

- улучшить качественные показатели нейтрализованного подсолнечного масла за счет снижения значений кислотного, перекисного и цветного чисел

Список использованной литературы:

- 1. М.Ф.Зайниев, А.В.Джамалов, С.Ш.Исматов, К.Х.Мажидов. Влияние способа очистки на качество и химический состав хлопкового масла. /Спец.выпуск «Химия природных соединений», 1998, с.45-46.
- 2. Арутюнян Н.С. и др. Технология переработки жиров. М.: Пищепромиздат. 1999.
- 3. Еров К.Б., Абдуллаев Р.Р., Тожиддинов Р.Х., Исматов С.Ш., Мажидов К.Х. О содержание сопутствующих маслу веществ при переработке с хлопковых семян. //"Химия природных соединений", Ташкент, 2001, Спецвыпуск, с.16-17.
- 4. Мажидов К.Х.,Исматов С.Ш. Повышение качества рафинированного хлопкового масла.//"Пищевая промышленность", Москва, 1996 № 4, с.20.
- 5. Лабораторный практикум по технологии переработки жиров. /H.С.Арутюнян, Е.А.Аришева, Л.И.Янова, М.А.Камышан. М.: Легкая и пищевая промышленность, 1883. 152 с.
- 6. Руководство по технологии и переработке растительных масел и жиров / Ред. кол. А.Г. Сергеев и др. Л.: ВНИИЖ, 1975. Т.II С. 240-245.
- 7. Киншаков К.Д. «Совершенствование технологии рафинации растительных масел и создание новых эмульсионных продуктов» Автореферат. Диссертация на соискание ученой степени кандидата технических наук. Москва-2013.
 - 8. Yo N. K. DIAGNOSTICS OF MATHEMATICAL DEVELOPMENT OF CHILDREN //European Journal of Research and Reflection in Educational Sciences Vol. 2020. T. 8. №. 1.